Process Mining as First-Order Classification Learning on Logs with Negative Events
نویسندگان
چکیده
Process mining is the automated construction of process models from information system event logs. In this paper we identify three fundamental difficulties related to process mining: the lack of negative information, the presence of history-dependent behavior and the presence of noise. These difficulties can elegantly dealt with when process mining is represented as first-order classification learning on event logs supplemented with negative events. A first set of process discovery experiments indicates the feasibility of this learning technique.
منابع مشابه
Concept drift detection in business process logs using deep learning
Process mining provides a bridge between process modeling and analysis on the one hand and data mining on the other hand. Process mining aims at discovering, monitoring, and improving real processes by extracting knowledge from event logs. However, as most business processes change over time (e.g. the effects of new legislation, seasonal effects and etc.), traditional process mining techniques ...
متن کاملA new approach for discovering business process models from event logs
Process mining is the automated acquisition of process models from the event logs of information systems. Although process mining has many useful applications, not all inherent difficulties have been sufficiently solved. A first difficulty is that process mining is often limited to a setting of non-supervised learning since negative information is often not available. Moreover, state transition...
متن کاملDepartment of Decision Sciences and Information Management (kbi)
Process mining is the research area that is concerned with knowledge discovery from event logs and is often situated at the intersection of the fields of data mining and business process management. Although the term entails a collection of a-posteriori analysis methods for extracting knowledge from event logs, most of the attention in the process mining literature has been given to process dis...
متن کاملRobust Process Discovery with Artificial Negative Events
Process discovery is the automated construction of structured process models from information system event logs. Such event logs often contain positive examples only. Without negative examples, it is a challenge to strike the right balance between recall and specificity, and to deal with problems such as expressiveness, noise, incomplete event logs, or the inclusion of prior knowledge. In this ...
متن کاملThe application of data mining techniques in manipulated financial statement classification: The case of turkey
Predicting financially false statements to detect frauds in companies has an increasing trend in recent studies. The manipulations in financial statements can be discovered by auditors when related financial records and indicators are analyzed in depth together with the experience of auditors in order to create knowledge to develop a decision support system to classify firms. Auditors may annot...
متن کامل